Temporal Graphical Models for Cross-Species Gene Regulatory Network Discovery

نویسندگان

  • Yan Liu
  • Alexandru Niculescu-Mizil
  • Aurelie C. Lozano
  • Yong Lu
چکیده

Many genes and biological processes function in similar ways across different species. Cross-species gene expression analysis, as a powerful tool to characterize the dynamical properties of the cell, has found a number of applications, such as identifying a conserved core set of cell cycle genes. However, to the best of our knowledge, there is limited effort on developing appropriate techniques to capture the causality relations between genes from time-series microarray data across species. In this paper, we present hidden Markov random field regression with L(1) penalty to uncover the regulatory network structure for different species. The algorithm provides a framework for sharing information across species via hidden component graphs and is able to incorporate domain knowledge across species easily. We demonstrate our method on two synthetic datasets and apply it to discover causal graphs from innate immune response data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap Inference for Network Construction with an Application to a Breast Cancer Microarray

Gaussian Graphical Models (GGMs) have been used to construct genetic regulatory networks where regularization techniques are widely used since the network inference usually falls into a high–dimension–low–sample–size scenario. Yet, finding the right amount of regularization can be challenging, especially in an unsupervised setting where traditional methods such as BIC or cross-validation often ...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Differential Parameter Learning

Background. Graphical models have gained significant attention as a tool for discovering and visualizing dependencies among variables in multivariate data. Recently, attention has been drawn to situations where domain experts are interested in differences between the dependency structures of different populations. (e.g. differences between regulatory networks of different species, or difference...

متن کامل

Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control

In many cases what matters is not whether a false discovery is made or not but the expected proportion of false discoveries among all the discoveries made, i.e. the so-called false discovery rate (FDR). We present an algorithm aiming at controlling the FDR of edges when learning Gaussian graphical models (GGMs). The algorithm is particularly suitable when dealing with more nodes than samples, e...

متن کامل

Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso

Gaussian Graphical Models (GGMs) are popular tools for studying network structures. However, many modern applications such as gene network discovery and social interactions analysis often involve high-dimensional noisy data with outliers or heavier tails than the Gaussian distribution. In this paper, we propose the Trimmed Graphical Lasso for robust estimation of sparse GGMs. Our method guards ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2011